
N90- 27280

Dynamic Test Input Generation for Multiple-Fault Isolation

Phil Schaefer

Martin Marietta Advanced Computing Technology

P.O. Box 179, M.S. 4372

Denver, CO 80201

Abstract

Recent work in Causal Reasoning has provided practical techniques for multiple

fault diagnosis. These techniques provide for a hypothesis/measurement diagnosis

cycle. Using probabilistic methods, they choose the best measurements to make,

then update fault hypotheses in response.

For many applications such as computers and spacecraft, few measurement points
may be accessible, or values may change quickly as the system under diagnosis

operates. In these cases, a hypothesis/measurement cycle is insufficient. This paper

presents a technique for a hypothesis/test-input/measurement diagnosis cycle. In
contrast to generating tests a priori for determining device functionality, it dynam-

ically generates tests in response to current knowledge about fault probabilities.

The paper shows how the mathematics previously used for measurement specifica-

tion can be applied to the test input generation process. An example from an effi-

cient implementation called MPC is presented.

I. Introduction

In recent years, AI techniques have proven useful for constructing fault diagnosis

tools. A particularly interesting subset of these techniques is based on Causal Rea-

soning. Causal reasoning tools use a model of how the unit should behave, assum-

ing no faults. This model can then be used to infer possible faults by comparing

the observed behavior to the behavior predicted by the model.

Recent work has yielded techniques for multiple fault diagnosis using such tech-

niques. The approach of (de Kleer and' Williams), for example, provides an efficient

framework for hypothesizing faults, given a set of measurements. At each step in

diagnosis, it determines the most helpful measurement to make next. This provides

a hypothesis/measurement diagnosis cycle.

A fault-isolation procedure based solely on a hypothesis/measurement cycle is often

insufficient. Many complex systems such as computers and spacecraft are packaged

in a way that makes measurement of most internal points time-consuming and ex-

pensive. Additionally, values within the system may not be static. For example, in
a microprocessor-based system, data is sent over the databus to peripheral devices.

Without sophisticated test equipment, the actual databus value cannot be measured

directly, because it is present for only a fraction of a microsecond. For these rea-

sons, it is often preferable to restrict measurement, when possible, to a few easily-

accessible points. In this style of diagnosis, multiple test inputs are generated to

observe the system in multiple states, rather than multiple measurements taken

with the system in a single state. Recently, researchers have introduced off-line

33

techniquesfor purposessuchas post-assemblycheckout(Shirley). However, little
has beenpresentedaboutdynamicallygeneratingtests for isolating multiple faults.

The following sections present a technique for adapting the mathematics of
hypothesis]measurementtechniquesfor performing dynamictest input generation
for multiple-fault isolation.SectionII describesthe causal modelsfor which this
techniqueapplies.SectionIII presentsthe approachto the test generationand se-
lection processes,and the techniquesadopted for deducing the most probable
faults. Finally, Section IV presentsan examplediagnosisusing an implemented
test-generation/fault-isolationsystem.

II. Causal Models for Multiple-Fault Diagnosis

Central to the causal-reasoning scheme is a causal model describing how the sys-

tem under diagnosis properly functions. The causal model contains a description of
the important points within the system, referred to as elements, and how the val-

ues of these elements cause and effect each other. Consider the system shown in

Figure 1. It is a modified portion of an experiment control electronics subsystem

concept being developed by Martin Marietta. This subsystem will be used as an ex-
ample in the following sections. In the model, elements correspond to inputs and

outputs of modules, as well as to a few module-internal points. Such a system can
be modeled with our DEFCAUSAL syntax. For example, one operation of the Re-

mote Interface Unit (RIU) is to write data to port EXP-CMD-3 when a :write-3

TDRSS

relay
satellite

tdrss-in

Computer

tdrss-out cu-cmd _ I oa-data

multiplex bus i

exp data 1

exp data 4

command unit

I

I bus control unit
BCU

bcu-cmd_
exp cmd 1

exp cmd 4

remote interface unit

Figure 1. Example system for diagnosis Partof experiment
control electronics subsystem. Commands sent and data gathered
via the TDRSS relay satellite.

34

commandis receivedon BCU-CMD.This relation is shownbelow(values starting
with a "?" are variables).

(defcausal RIU

(BCU-CHD (:write-3 ?data) :momentary) causes

(EXP-CMD-3 ?data :continuing))

Another causal relation describes how the On-Board Computer (OBC), when in the

:experiment mode, sends commands on the Command Unit (CU) line. The com-

mands are sent from the OBC command-sequence memory:

(defcausa] OBC

(OBC_MEH ?memory)

(MODE :experiment)

(ELAPSED-TIME ?t) causes

(CU-CMD (address ?t ?memory) :momentary)).

The :momentary and :continuing flags indicate the temporal relations of the causes
and effects.

III. Dynamic Test Input Generation

An important pa_t of diagnosis is to gain knowledge about the internal state of the

malfunctioning system. This knowledge helps to decide which among several fault

hypotheses is actually correct. In systems with many measurable internal points,

this knowledge is gained by direct measurement, e.g., with voltmeters, logic

probes, etc. When internal points are inaccessible, we must adopt a different
means of obtaining this information. Our approach is based on a concept of path

generation. In this approach, paths through the system are generated, which, if

tested, will yield information about the internal system state. Our approach incor-

porates this idea with the following processes: (1) A Candidate Generator, which
uses the measurements resulting from tests to produce fault hypotheses and their

associated probabilities; (2) a Path Constructor, which suggests test paths through

the model to gain information about the hypothesized faults; (3) a Path Selector,

which chooses the path most helpful in discriminating between fault hypotheses;

and (4) a Causal Planner, which produces a test input sequence to activate the se-

lected path. Figure 2. presents a diagram of how these processes interact in a test-

generation]fault-isolation system.

Candidate Generation

The Candidate Generator derives the fault hypotheses (candidates) implied by ob-

served symptoms. It assigns probability estimates to each candidate.

Upon input of a symptom (an unexpected value at an observed element), the

Causal Planner determines which causal relations imply the correct value, rather
than the symptom value, was to be expected. This set is known as the active rela-

tions set. The Causal Planner produces this set as follows: given the correct out-

puts as goals and the inputs which were present when the symptom was observed

35

feasible

paths to test

i

path to test
I causalplanner

path
selector

path

constructor { suspect

causal relations

causal

model

generator

fault hypotheses

test input sequence

measurements

Figure 2. Test generation/Diagnosis architecture.

as constraints on the solution, it generates a plan indicating the required inputs.

During planning, the planner selects a causal relation to achieve each subgoal.

When a solution is found, the set of relations selected in planning comprises the

active relations set. This set can be described as a directed graph, relating input

values, through intermediate values, to the desired output value. Assume, for ex-

ample, that a value of 35 is desired on the TDRSS-IN line of the system of Figure

1. The resulting active relations set is shown in Figure 3. The active relations set

describes the mechanisms which if functioning properly, would provide the correct

behavior. When a failure symptom is observed, therefore, at least one of the active

relations must not be functioning as specified. Conversely, if the correct output

results, there is evidence that the active relations set is without fault.

One useful technique for generating candidates based on causal information has

been described by (de Kleer and Williams). The technique maintains a set of mini-

mal candidates, each of which must be able to account for all observed symptoms.

Probability values are assigned to each candidate, using Bayesian probability con-

cepts. Candidate generation, in our approach describing faults in terms of faulty

active relations, is taken directly from (de Kleer and Williams), so will not be re-

peated here. A slight modification of the probability assignment approach is pre-
sented here.

A test passes if the value predicted by the model is observed at the test point. Af-

ter each test is run, the probabilities of all candidates are updated, based on

whether the test passes or fails. The probability that all of the relations in the

candidate are faulty is assigned to each candidate. The probability of candidate Cj,

with respect to its previous probability P(Cj) is, by Bayes' rule (if the test fails)

36

multiplex-bus = (CU 35_--_ cu-data = 35

t-
I .u_a_--35 I

_........-------oN

[multi_ Iobc-mode=/¢ configure

, I _ ,. __.--4 tim_=_I /
! '_c_='e':" _ ,'_

"_ obc-mode = experiment]_ r2

I "° q I

b,,
rl_tdrss-out = (mode configure)]

i tdrss-out = (write 1,READ4)_

tdrss-out = (mode experiment) I

Figure 3. Active causal relations (ri) indicating why TDRSS-IN should equal 35.

OBC memory is loaded with "re_-4" in location 1. Then, in the "experiment" mode,
when time=l, the OBC sequeaw.er sends the command, which sends the result to TDRSS.

P(Cjl fails) = _failsl Cj P(Cj)

P(fails)

where

P(failsl Cj) = 8 if Cj_active-relations

1-r if Cj{lactive-relations

Cj/lactive relations

P(fails) = >", P(cj)(1 - r)

J

and, if the test passes,

P(Cjl passes) = P(passesl Cj) P(Cj)

P(passes)

where

P(passesl Cj) = I if Cj4P(active-relations

r if CjO active-relations

Cjtlactive relations Cj _active relations

P(passes) :_ P(Cj) r + _P(Cj)

J J

37

As reflected above, even if a candidate is the fault, the correct value will in some

cases result at the test point under the conditions of the test. This effect is ap-

proximated above with a constant, r, which indicates the probability that a particu-
lar relation will so behave.

Path Construction

Path construction is the basis of our test generation approach. The purpose of

path construction is to generate a path using causal relations from a point internal

to the system to a measurable point. By measuring the result at the output point,
evidence about the internal state will be obtained.

When generating a test, we wish to obtain knowledge about which active relations

have failed. The test path will therefore traverse causal relations from the active
relations set. For example, given the active relations of Figure 3, each test path

would pass through at least one of the relations rl through rl0. If an incorrect

value results at the end of a path, there exist faults within the relations traversed

by the path. Otherwise, evidence indicates faults probably do not exist in the path.

The process of path construction is depicted in Figure 4. The causal relation ri
takes the values of the elements ei and causes the value at elements ei+l. Assume

that the relations r' are not within the active relations set. If ei has the expected

ri.l
ri

potential test path __

-" """ measurable point

r'i+i "'""

ri+l symptom point

Figure 4. Path Construction for isolating possible fault of relation ri (see texO.

value, but ei+l does not, ri must be faulty. To discriminate between ri and the re-

lations rj>i, paths not passing through rj are needed. Paths through ri and r'i+l

will therefore be constructed. Similarly, to discriminate between ri and rj<i, paths
through r'i-1 and ri are constructed. All of the constructed paths must terminate

at a measurable element, so that measured values can be used to gain the re-
quired information.

To this end, the path constructor generates all paths through relations ri of the

active relations set, with and without alternative relations r', terminating at mea-

surable points. When a path is activated by a test input, the value at its measur-
able point is the test result.

Path Selection

The Path Selector chooses the path most useful to test, and gives it to the Causal

Planner as a test goal.

38

The results of a particular test will give evidenceabout whether a fault exists
within the active relationsof the test. Therefore,to determine the usefulnessof a
path, it is necessaryto know which causal relations needto be active to run the
test. Figure 5 depictsthis situation. The large triangle of Figure 5 representsthe
active relations which shouldhave causeda correct value at the symptom-point.
The small triangle representsthe relations contributing to the expectedvalues
neededfor the relation ri-1. If the path r' were to be tested, the relations repre-
sentedby the large dashedtriangle of Figure 5 would be under test, becausethey
are all neededto activatethe path r'. The way to determinethis set of relations is
to run the CausalPlanner,as describedin "CandidateGeneration."Given a large
modeland a large set of potential paths (a commonoccurrence),the time to evalu-
ate all the optionswould be prohibitive (In the examplemodel,the planner runs
for about 5 secondsfor eachplan). An approximationis therefore used.The rela-
tions within the small triangle are already known, because they were determined

test i _" _-_.
inputs _ _, -.,

'--- _- active relations set

_"_2"p.,..._ ,,, --'--- -------- ---- . symptom

ri_ n "_ _, _ point

....... ---......?.).._inputs active relations'se_ _ " " - _" -_':,',,. measurable

for potential test path point

Figure 5. The active relations set for the test path is approximated by the relations
comprising the small triangle union the relations forming the potential test path.

in finding the active relations leading to the original symptom. The union of that
set and the set of relations used to construct the potential path can therefore ap-

proximate the active relations set. This approximation may skew path selection, by

affecting the probability of the test passing, as indicated in the equations above.

Fortunately, it will not affect accuracy of the test results, because the planner will

later be run for the selected path to generate the test input. This will determine
the exact active relations set.

At this point, the potential paths, each with the set of causal relations it tests,
have been determined. The final step in path selection is to choose the set of rela-
tions most useful to test. Techniques similar to those presented in (de Kleer and

Williams) apply to path selection. The essentials of the process are discussed here.

The best test is defined as that which minimizes the expected entropy of the can-

didate set, using the Information Theory definition of entropy

candidates

H =- _ P(Cj) log P(Cj).

J

39

As the probabilities move toward 0 or 1, this sum is minimized. The expected en-

tropy resulting from a given test is

H = H(passes) p(passes) + H(fails) p(fails).

In terms of the definition of entropy,

^ candidates
H(passes) = -_P(Cj I passes) log P(Cj

J
I passes)

^ candidates

H(fails) =-_P(Cj I fails) log P(Cj I fails).

J

The conditional probabilities of each candidate are as given in "Candidate Gener-
ation." The test which minimizes H is selected as the best test to run next.

The final part of test generation is implemented by giving the Causal Planner the

desired value of the measurable point (the output of the selected path) as a goal.
The constraints on the plan are that the approximated active relations set is in-

cluded in the solution. When the _planner terminates, the plan produced is the test

input.

IV. MPC- An Implementation of Test Input Generation

A computer program implementing the test-generation/fault-isolation architecture
Of Figure 2. has been implemented as part of the MPC (Multi-Purpose Causal)

tool. It is implemented in Lisp on a Symbolics 3670. MPC accepts models described

in the DEFCAUSAL syntax and currently has an interface requesting tests and ac-

cepting measurement results. It has been tested on several models, including an

expanded version of the example presented here.

An example diagnosis session using MPC will now be described, indicating the op-

eration of the various test-generation subsystems. Assume that the sequence of

TDRSS commands (mode :configure), (write 1,(write-3 35)), and (mode :experiment)

were sent to the system of Figure 1. As shown in Figure 3, a value of 35 on the

EXP-CMD-3 control line would be expected. Assume that this value was not ob-

served. MPC is therefore given EXP-CMD-3 as the initial symptom point. Ten can-

didates are generated, one for each of the potentially faulty relations shown in Fig-
ure 3. The candidate probabilities are as follows:

[rl} = .100, {r2} = .100, {r3} = .100, {r4} = .100, {r5} = .100,

{r6} = .100, {r7} = .100, {r8} = .100, {r9} = .100, {rl0} = .100.

Paths from the points associated with these candidates to measurable outputs

(EXP-CMD-1 - EXP-CMD-4 and TDRSS-IN) are generated. The most useful path,

according to the entropy-measurement equations described in "Path Selection," is

the path from the BCU-CMD element to the measurable point EXP-CMD-1. This

selection corresponds to the intuitive "divide the problem in half' approach often

40

used by technicians. To generate a test of this path, the causal planner is invoked,

and is constrained to use the causal relations rl through r6 in the plan, as they

were used to cause the point of interest BCU-CMD, as can be seen in Figure 3.

The resulting plan is

TDRSS-OUT : (mode :configure)

TDRSS-OUT = (write I, (write-I

TDRSS-OUT = (mode :experiment).

35))

MPC then prompts

Is the value at EXP-CHD-I equal to 35?

Assume that the answer is "yes." The updated candidate probabilities are

{rl} = .039, {r2} = .039, {r3} = .039, {r4} = .039, {r5} = .039,

{r6} = .039, {r7} --.192, {r8} = .192, {r9} = .192, {rl0} = .192,

indicating that the candidates describing the relations on the path from the experi-

ment back to the TDRSS are most suspect. The paths from the active relations are

once again evaluated. Based on the new candidate probabilities, however, the most

useful path is from BCU-CMD to TDRSS-IN, but using a different causal relation

from BCUoCMD. The path selected goes through the relation rll, using EXP-

DATA-l, rather than the original EXP-DATA-4. The resulting plan is

TDRSS-OUT : (mode configure)

TDRSS-OUT : (write I, read-l)

EXP-DATA-I : 35

TDRSS-OUT = (mode experiment),

followed by the prompt

Is the value of TDRSS-IN equal to 35?

If the answer to the test is "yes," the probabilities indicate a strong preference for

a single candidate, indicating that r7 is the faulty mechanism:

{rl} = .022, {r2} = .022, {r3} = .022, {r4} = .022, {r5} = .022, {r6} = .022,

{r7} = .543, {r8} = .109, {r9} = .109, {rl0} = .109.

If this amount of convergence is sufficient to terminate testing, MPC reports its

findings. Because R7 is implemented in the RIU module, RIU is reported as the

suspect module. These results were obtained by using a value of .2 for r in the

probability equations. With a smaller value, the convergence on the candidate {r7}

would have been faster.

41

Conclusions

The test generation architecture implemented in the MPC system contributes a
new tool to the set of causal reasoning capabilities now available. For systems in

which few points are accessible, or in which transient effects are important, it pro-
vides a means to dynamically generate tests in response to observed symptoms.

The MPC approach is an extension to several other causal-reasoning efforts. Shar-

ing some of the techniques of (Shirley), it generates tests to narrow down fault

hypotheses, rather than to test specific components. It makes use of the probabilis-

tic hypothesis generation and belief ideas of (de Kleer and Williams), but for test-

generation purposes. This use of probability avoids the need for the "evidence

model" required in the approach described in (Schaefer).

The current approach assumes that when a causal relation fails, the physical fail-

ure is in the device designed to implement the relation. Occasionally, however, an-

other device may have a failure, such as a short circuit, which interferes to cause
the relation to fail. Using the model to explore these possibilities, making use of

"Pathways of Interactions" techniques similar to (Davis), is a topic of ongoing re-

search. Other extensions include more sophisticated techniques for explaining the

significance of test results to the user.

References

1. De Kleer, J., and B.C. Williams, "Diagnosing Multiple Faults," Artificial Intelli-

gence, vol. 32, nr. 1, pp. 97-130, 1987.

2. Shirley, M. H., "Generating Tests by Exploiting Designed Behavior," Proc.
AAAI-86, pp. 884-890, 1986.

3. Schaefer, P. R., "Higher Level Causal Reasoning for Diagnosis," Proco IEEE

Int'l Workshop on AI for Industrial Appl., pp. 33-38, 1988.

4. Davis, Randall, Diagnostic Reasoning Based on Structure and Behavior, AI

Memo 739, Massachusetts Institute of Technology, 1984.

42

